

SANYO SANYO Semiconductors

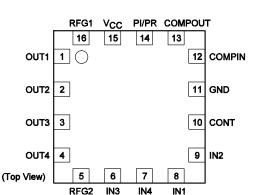
APPLICATION NOTE

Bi-CMOS LSI LV8080LP — Two channels Constant-current **H-bridge Driver**

Overview

The LV8080LP is a two-channel constant-current driver that supports low-voltage operation. It is optimal for constant-current drive of stepping motors (AF and zoom) in portable equipment such as camera cell phones.

Features


- Two channels constant-current H-bridge driver
- Built-in power supply switch and position detection comparator for use with a photoreflector
- Supports both 2-phase drive and 1-2 phase drive.
- Implemented in a low-power MOS IC process.
- Ultraminiature easy- to- solder VCT16 package (2.6 × 2.6mm)
- Built-in thermal protection and low-voltage sensing circuits

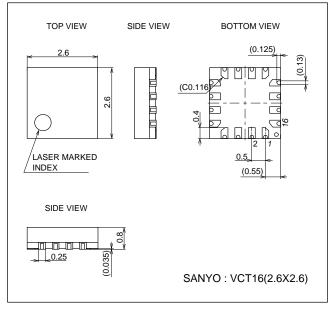
Typical Applications

- DSC
- Security Camera
- Pocket movie

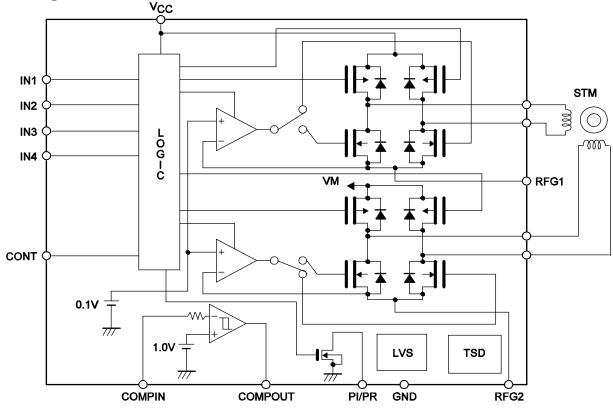
Pin Assignment

(VCT16)

• TOY

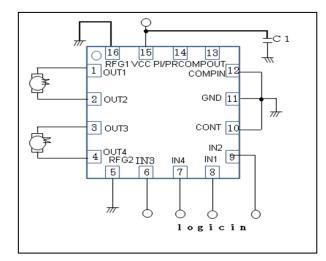

POS, Card Reader

· Paintings and writings camera

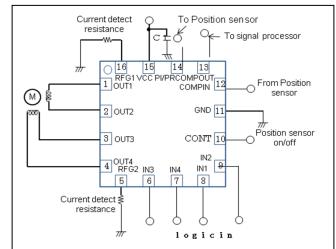

Package Dimensions

unit : mm (typ)

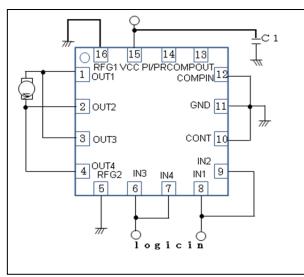
Block Diagram


Constant-current calculation : $I_{OUT} = 0.1 \div RF$ Example : When an I_{OUT} of 100mA is required, RF must be 1 Ω .

Usage Notes


The constant current is set by the resource RF connected between RFG and ground according to the formula shown above.

Application Circuit Example


1. Example of applied circuit with two DC motor driving

2. Example of applied circuit with one stepping motor driving

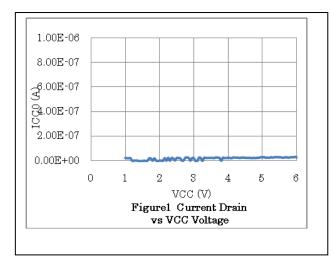
3. Example of applied circuit when connecting in parallel The use likened to H bridge 1ch is shown possible in the figure below by connecting IN1 with IN3, IN2 with IN4, OUT1 with OUT3, OUT2, and OUT4. (I_O max = 0.8A, Upper and lower total R_{ON} = 1.35 Ω)

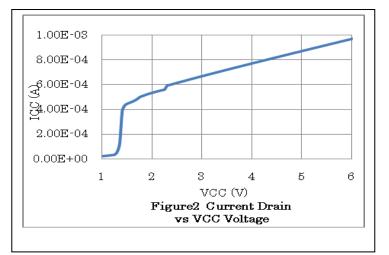
Specifications

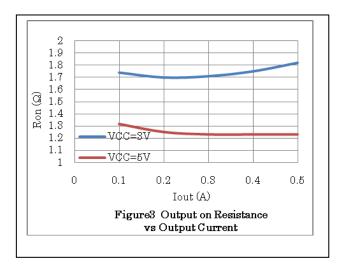
Absolute Maximum Ratings at Ta = 25°C

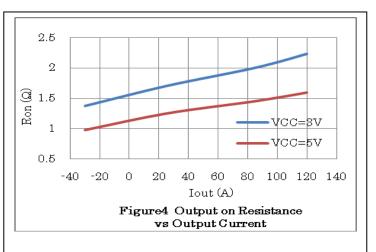
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} , VM max		6.5	V
Output voltage	V _{OUT} max	OUT1, OUT2, OUT3, OUT4	6.5	V
Input voltage	V _{IN} max	CONT, IN	-0.3 to +6.5	V
Ground pin source current	IGND	Per channel	400	mA
Allowable power dissipation	Pd max	Mounted on a circuit board.*	700	mW
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-40 to +150	°C

* Specified circuit board : $40 \times 50 \times 0.8 \text{mm}^3$: 4-layer (2S2P) glass epoxy printed circuit board

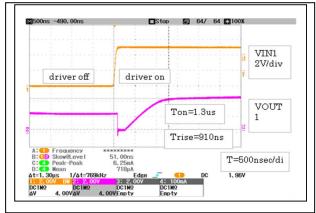

Allowable Operating Ratings at Ta = 25°C

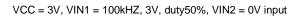

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		2.5 to 6.0	V
High-level input voltage	VIH	CONT, IN	0.6V _{CC} or more	V
Low-level input voltage	VIL		Up to 0.2V _{CC}	V

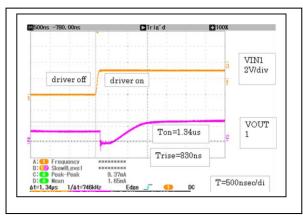

Electrical Characteristics at Ta = 25° C, V_{CC} = 3.0V

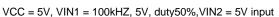

Deservator	Cumhal	Conditions		Unit			
Parameter	Symbol	Conditions	min typ		max		
Current drain	lcco	EN = 0V		0.1	1	μA	
	Icco1	EN = 3V		0.7	1	mA	
Output on resistance	Ron1	V_{CC} = 3.0V (High and low side total) EN = 3.0V, I _{OUT} = 100mA		2.0	3.0	Ω	
	Ron2	V_{CC} = 5.0V (High and low side total) EN = 5.0V, I _{OUT} = 100mA		1.50	2.0	Ω	
Constant-current output 1	IOUT1	Between RFG and ground : 1Ω	95	100	105	mA	
Constant-current output 2	I _{OUT} 2	Between RFG and ground : 0.5Ω (Design specification)	190	200	210	mA	
Output turn-on time	Traise	With RFG1 and RFG2 shorted to ground (Design specification)		1.3	3	μS	
Output turn-off time	Tfall	With RFG1 and RFG2 shorted to ground (Design specification)		0.25	0.65	μS	
Position detection voltage (high level)	VH			1.0	1.06	V	
Position detection voltage (low level)	VL		0.74	0.8		V	
Detection voltage hysteresis	HYS		0.165	0.18	0.195	V	
PI/PR pin current	IPI/PR				20	mA	
Input current	IIN	V _{IN} = 3V		15	30	μΑ	

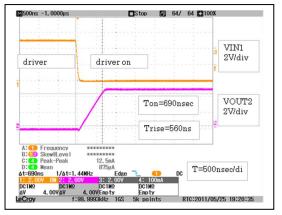
Note : The design specification items are design guarantees and are not measured.

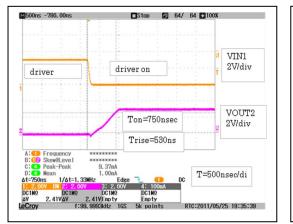


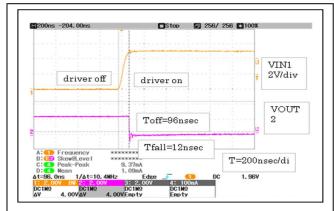


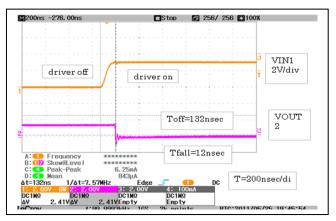

.V8080LP

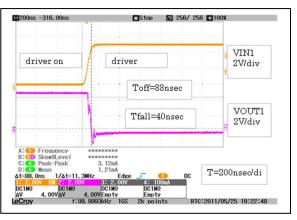

Example of Turn-on and Turn-off output waveform


VCC = 5V, VIN1 = 100kHZ, 5V, duty50%, VIN2 = 0 input

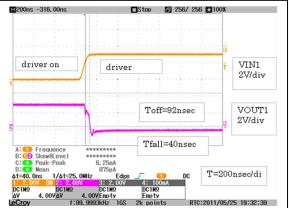







RFG-GND shorted load is 10kohm pullup & down (Fast decay)




RFG-GND shorted load is 10kohm pullup & down (Fast decay)

RFG-GND shorted load is 10kohm pullup & down (Slow decay)

Pin Description

Pin No.	Pin Name	Description	Equivalent Circuit
1	OUT1	1-4 : Output pins	
2	OUT2	H-bridge type output pins	Vcc
3	OUT3	Pins 1 and 2 are paired; and pins 3 and 4 are paired.	
4	OUT4		
5	RFG2	5, 16 : Current sensing resistor connection pins	
16	RFG1	Connect the current sensing resistor between these	
		pins and ground to detect the output currents for	
		constant current control.	⊣∉ ↑ ↑ ↑
		Pin 16 corresponds to the output from pins 1 and 2 and	
		pin 5 to the output from pins 1 and 2.	
			_
			5
			0.1V · ///
6	IN3	Logic input pins	
	IN4		Vcc
8	IN1		
9	IN2		
10	CONT		
			10kΩ
			▲ 200kΩ ≩ → ∈
			GND
11	GND	Ground	
12	COMPIN	Photo reflector position sensing comparator input	
			$\overline{}$
13	COMPOUT	Photo reflector position sensing comparator output	1kΩ
		This pin serves as an open-collector output of the NPN	
		transistor.	

Continued on next page.

Pin No.	Pin Name	Description	Equivalent Circuit
14	PI/PR	A switch, with NMOS open-drain output, used to turn on/off the power supply of the position sensor unit. When using this switch, connect the position sensor unit between this pin and the V _{CC} pin. On/off control of this switch is accomplished by CONT pin. Setting the CONT pin high turns on the switch.	6 G G G G G ND
15	Vcc	Power supply pin	

Operation explanation

1. LV8080LP Input-Output-Logic

Truth Table

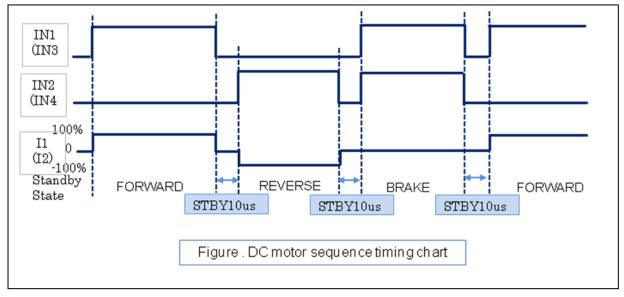
	Input				Ou	Maria		
IN1	IN2	IN3	IN4	OUT1	OUT2	OUT3	OUT4	Mode
Low	Low	Low	Low	Off	Off	Off	Off	Standby mode
Low	High			Low	High			Channel 1, reverse
High	Low	-	-	High	Low	Off	Off	Channel 1, forward
High	High			Low	Low Low			Channel 1, brake mode
		Low	High			Low	High	Channel 2, reverse
-	-	High	Low	Off	Off	High	Low	Channel 2, forward
		High	High			Low	Low	Channel 2, brake mode

Note : The "-" input unstable state. When off, a high-impedance state.

• The ENA goes to the standby state with a low-level input, and to the operating state with a high-level input.

• The control input switches the forward/reverse mode.

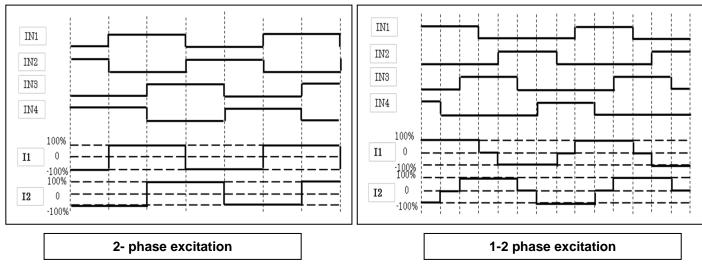
2. DC motor operation sequence


• The following chart shows the DC-motor sequence from Standby, Forward, Reverse, Brake, and Forward.

When IN1, IN2, IN3, IN4 are "L", the operation of LV8080 is stopped.

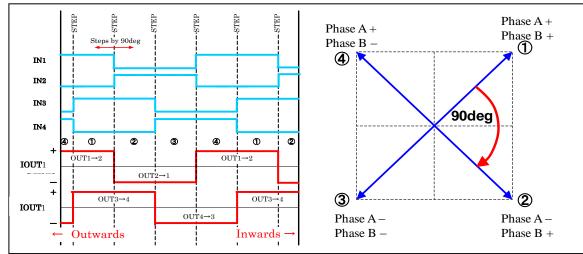
Please set standby mode for 10usec between Forward and Reverse mode,

Likewise, please set standby mode for 10usec between Forward and Brake mode,

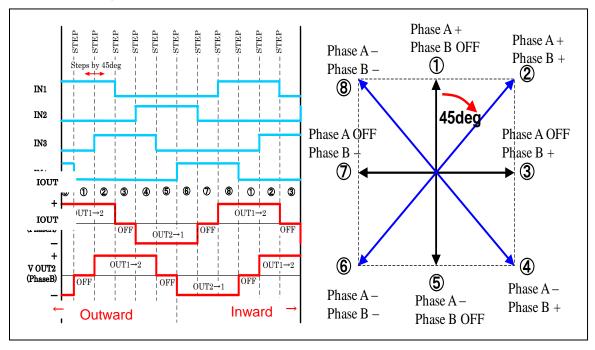

as well as Reverse and Brake mode .

LV8080LP

3. Stepping motor operation Sequence


Example of current wave type in each excitation mode when stepping motor parallel input is controlled.

Theory

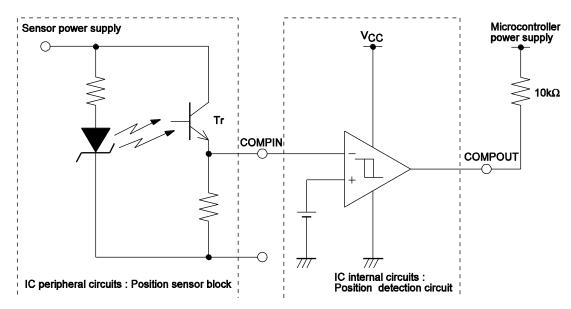

Full-Step MODE

The motor moves 90 degrees in an electric corner when I input 1Step.

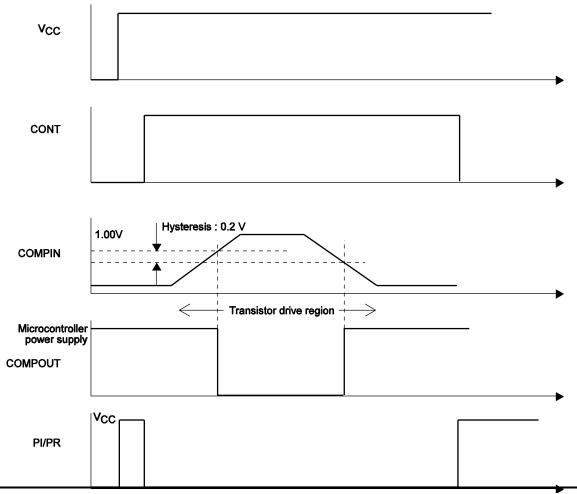
Half-Step MODE

The motor moves 45 degrees in an electric corner when I input 1Step

4. Constant current


· Constant current is obtained as follows: IOUT = 0.1 ÷ RF

(Example : When I_{OUT} of 100mA is required, RF must be 1 Ω . RF is the sense resistor as shown in p.3)


The constant current is set by the resistor RF connected between RFG and ground.

5. Photosensor Position Detection Application Circuit Example

(a) Application circuit

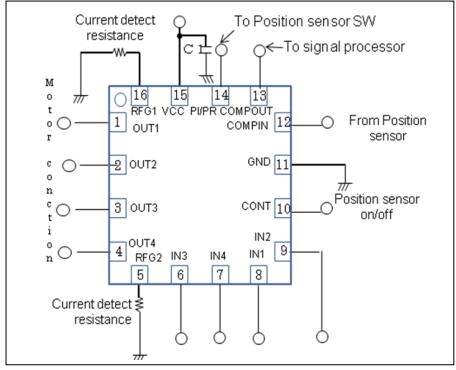
(b) Timing chart

6. Thermal shutdown circuit

The thermal shutdown circuit in incorporated and the output is turned off when junction temperature Tj exceeds 175°C and the abnormal state warning output is turned on. As the temperature falls by hysteresis, the output turned on again (automatic restoration).

The thermal shutdown circuit does not guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of Tjmax=150°C.

 $TSD = 175^{\circ}C (typ)$ $\Delta TSD = 30^{\circ}C (typ)$

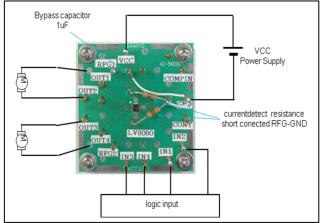

7. Low voltage protection function

When the VCC voltage is below the typical 2.4V in LV8080LP, OUT1 through OUT4 are turned off. When the VCC voltage is above the typical 2.55V, OUT1 through OUT4 are turned on.

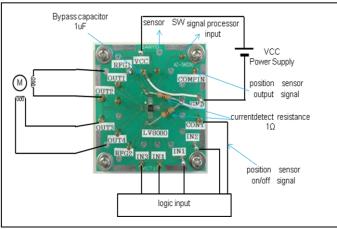
*When thermal shutdown function or low voltage protection function is activated, OUT1 through OUT4 are turned off under the control of the internal circuit. However, the output (PI) of photo sensor driving transistor continues operation.

Eva-Board Manual

1. Eva-Board circuit diagram



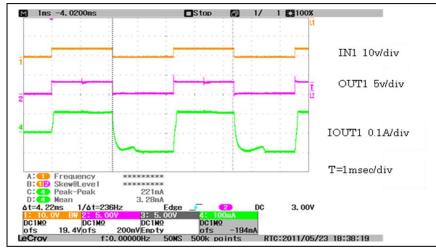
Bill of Materials for LV8080LP Evaluation Board


Designator	Qty	Description	Value	Tol	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free
IC1	1	Motor Driver			VCT16 (2.6X2.6)	SANYO semiconductor	LV8080LP	No	Yes
R1	2	Current detect resistance	Carbon 1Ω (1W/4)						
C2	1	VCC Bypass Capacitor	0.1µF 100V			Murata	GRM188R72A 104KA35D	Yes	Yes
TP1-TP14	14	Test points				MAC8	ST-1-3	Yes	Yes

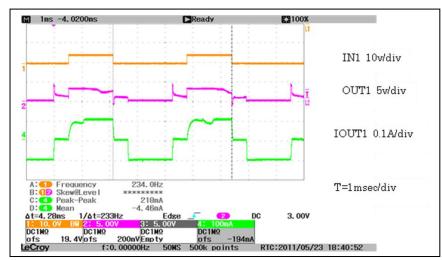
2-1. Eva-Board Photograph

(1) Two DC motor drive

- Connect OUT1 and OUT2, OUT3 and OUT4 to a DC motor each.
- Connect the motor power supply with the terminal VCC, the control power supply with the terminal VIN. Connect the GND line with the terminal GND.
- DC motor becomes the predetermined output state corresponding to the input state by inputting an input signal such as the following truth value table into IN1~IN4.
- (2) One stepping motor drive

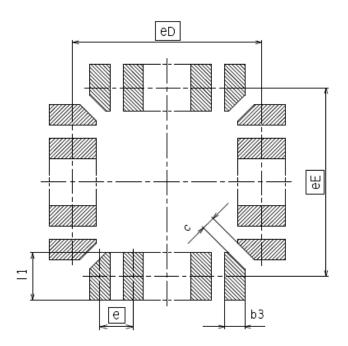


Connect a stepping motor with OUT1, OUT2, OUT3 and OUT4.


- Connect the motor power supply with the terminal VCC, the control power supply with the terminal VIN. Connect the GND line with the terminal GND.
- STP motor drives it in a 2-phase excitation, 1-2 phase excitation by inputting an input signal such as follows into IN1~IN4.

Waveform of LV8080LP evaluation board when driving stepping motor

• Full-Step Drive VCC = 3.3V 1000pps


•Half-Step Drive VCC = 3.3V 2000pps

Recommended Soldering Footprint

Mounting Pad Sketch

∨ст∕ист

(Unit:mm)

Reference			Packages name		
symbol	VCT/UCT16(2,6X2,6)	VCT/UCT20 (2, 6X2, 6)	VCT/UCT2D(3, 0X3, 0)	VCT/UCT24(3, DX3, 0)	VCT/UCT24 (3, 5X3, 5)
eD	2,30	2 . 3D	2,70	2,70	3 . 2D
еE	2, 30	2 . 3D	2,70	2,70	3 . 2D
e	D. 50	0.40	0.50	D. 4D	0.50
bз	0. 30	0.19	0.30	D. 19	O. 3D
1	D, 70	0, 7D	0,70	D, 70	O, 7D
С	0, 20	0, 2D	0,20	D, 20	0,20

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of May, 2011. Specifications and information herein are subject to change without notice.